किसी बहुपद के शून्यकों और गुणांकों में सम्बंध: Difference between revisions

From Vidyalayawiki

No edit summary
No edit summary
Line 3: Line 3:
[[Category:गणित]]
[[Category:गणित]]
[[Category:कक्षा-10]]
[[Category:कक्षा-10]]
इस इकाई में हम बहुपद के शून्यको तथा उसके गुणांकों के बीच संबंध को जानेंगे , तो आईए सबसे पहले हम बहुपद के शून्यको के बारे में जानते हैं । किसी बहुपद  <math>p(x)</math> में यदि  <math>p(k)=0</math> तो <math>k</math> को बहुपद <math>p(x)</math> का शून्यक कहा जाता है , जहां <math>k</math> एक वास्तविक संख्या होगी । बहुपद का शून्यक ज्ञात करने के लिए हम उस बहुपद को शून्य के बराबर रखते हैं और उसमें चर का मान ज्ञात करते हैं। चर का मान बहुपद का शून्यक या मूल कहलाता हैं जो बहुपद की घात पर निर्भर करता है। यदि बहुपद की घात <math>1</math> है तो एक शून्यक होगा और यदि घात <math>2</math> है तो दो शून्यक होंगे । किसी बहुपद में चर से गुणा की जाने वाली वास्तविक संख्या को उसका गुणांक कहा जाता है ।
इस इकाई में हम बहुपद के शून्यको तथा उसके गुणांकों के बीच संबंध को जानेंगे , तो आईए सबसे पहले हम बहुपद के शून्यको के बारे में जानते हैं । किसी बहुपद  <math>p(x)</math> में यदि  <math>p(k)=0</math> तो <math>k</math> को बहुपद <math>p(x)</math> का शून्यक कहा जाता है , जहां <math>k</math> एक वास्तविक संख्या होगी । बहुपद का शून्यक ज्ञात करने के लिए हम उस बहुपद को शून्य के बराबर रखते हैं और उसमें चर का मान ज्ञात करते हैं। चर का मान बहुपद का शून्यक या मूल कहलाता हैं जो बहुपद की घात पर निर्भर करता है। यदि बहुपद की घात <math>1</math> है तो एक शून्यक होगा और यदि घात <math>2</math> है तो दो शून्यक होंगे । किसी बहुपद में चर से गुणा की जाने वाली वास्तविक संख्या को उसका गुणांक कहा जाता है ।
 
== रैखिक बहुपद के शून्यकों और गुणांको में संबंध ==
यदि <math>k</math> ,  <math>p(x)=ax+b</math> का एक शून्यक है ,
 
<math>p(k)=ak+b=0</math>
 
अर्थात, <math>k=\frac{-b}{a}</math>
 
अतः , रैखिक बहुपद  <math>p(x)=ax+b</math>  का शून्यक <math>k=\frac{-b}{a}</math>  है ।
 
<math>\frac{-b}{a}=</math>  (<math>-</math>अचर पद) / <math>x</math> का गुणांक
 
इस प्रकार, एक रैखिक बहुपद का शून्यक उसके गुणांकों से संबंधित होता है।
 
== द्विघात बहुपद के शून्यकों और गुणांको में संबंध ==
यदि <math>\alpha</math> और <math>\beta</math> द्विघात बहुपद  <math>p(x)=ax^2+bx+c</math> के शून्यक हैं , जहाँ  <math>a,b,c</math>  वास्तविक संख्याएं है एवं <math>a\neq0</math> हैं ,  और <math>(x-\alpha)</math> और <math>(x-\beta)</math> p(x) के गुणनखंड हैं ,
 
<math>ax^2+bx+c= k(x-\alpha)(x-\beta)</math>  ,  जहां <math>k</math> एक अचर पद हैं ,
 
<math>=k[x^2-(\alpha+\beta)x+\alpha\beta]</math>
 
<math>=kx^2-k(\alpha+\beta)x+k\alpha\beta</math>
 
<math>x^2,x </math>  और अचर पद के गुणांकों की दोनों पक्षों पर तुलना करना करने पर ,
 
<math>a=k</math>  ,  <math>b=-k(\alpha+\beta)</math>  ,  <math>c=k\alpha\beta</math>
 
अतः हमें प्राप्त होता है कि ,
 
<math>\alpha+\beta= \frac{-b}{a}</math>
 
<math>\alpha\beta=\frac{c}{a}</math>
 
शून्यकों का योग <math>=</math> <math>\alpha+\beta= \frac{-b}{a}</math> <math>=</math> (<math>-x</math> का गुणांक/ <math>x^2</math> का गुणांक )
 
शून्यकों का गुणनफल <math>=</math> <math>\alpha\beta=\frac{c}{a}</math> <math>=</math> ( अचर पद /  <math>x^2</math> का गुणांक )
 
इस प्रकार, एक द्विघात बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।
 
== त्रिघात बहुपद के शून्यकों और गुणांको में संबंध ==
यदि <math>\alpha</math> , <math>\beta</math> , <math>\gamma</math>  त्रिघात बहुपद  <math>p(x)=ax^3+bx^2+cx+d</math>  के शून्यक हैं , जहाँ  <math>a,b,c,d</math>  वास्तविक संख्याएं है एवं <math>a\neq0</math> हैं ,
 
<math>\alpha+\beta+\gamma= \frac {-b}{a}</math>
 
<math>\alpha\beta+\beta\gamma+\gamma\alpha=\frac{c}{a}</math>
 
<math>\alpha\beta\gamma= \frac{-d}{a}</math>
 
इस प्रकार, एक त्रिघात बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।

Revision as of 10:07, 23 September 2023

इस इकाई में हम बहुपद के शून्यको तथा उसके गुणांकों के बीच संबंध को जानेंगे , तो आईए सबसे पहले हम बहुपद के शून्यको के बारे में जानते हैं । किसी बहुपद में यदि तो को बहुपद का शून्यक कहा जाता है , जहां एक वास्तविक संख्या होगी । बहुपद का शून्यक ज्ञात करने के लिए हम उस बहुपद को शून्य के बराबर रखते हैं और उसमें चर का मान ज्ञात करते हैं। चर का मान बहुपद का शून्यक या मूल कहलाता हैं जो बहुपद की घात पर निर्भर करता है। यदि बहुपद की घात है तो एक शून्यक होगा और यदि घात है तो दो शून्यक होंगे । किसी बहुपद में चर से गुणा की जाने वाली वास्तविक संख्या को उसका गुणांक कहा जाता है ।

रैखिक बहुपद के शून्यकों और गुणांको में संबंध

यदि , का एक शून्यक है ,

अर्थात,

अतः , रैखिक बहुपद का शून्यक है ।

(अचर पद) / का गुणांक

इस प्रकार, एक रैखिक बहुपद का शून्यक उसके गुणांकों से संबंधित होता है।

द्विघात बहुपद के शून्यकों और गुणांको में संबंध

यदि और द्विघात बहुपद के शून्यक हैं , जहाँ वास्तविक संख्याएं है एवं हैं , और और p(x) के गुणनखंड हैं ,

, जहां एक अचर पद हैं ,

और अचर पद के गुणांकों की दोनों पक्षों पर तुलना करना करने पर ,

, ,

अतः हमें प्राप्त होता है कि ,

शून्यकों का योग ( का गुणांक/ का गुणांक )

शून्यकों का गुणनफल ( अचर पद / का गुणांक )

इस प्रकार, एक द्विघात बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।

त्रिघात बहुपद के शून्यकों और गुणांको में संबंध

यदि , , त्रिघात बहुपद के शून्यक हैं , जहाँ वास्तविक संख्याएं है एवं हैं ,

इस प्रकार, एक त्रिघात बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।