इस इकाई में हम बहुपद के शून्यको तथा उसके गुणांकों के बीच संबंध को जानेंगे , तो आईए सबसे पहले हम बहुपद के शून्यको के बारे में जानते हैं । किसी बहुपद में यदि तो को बहुपद का शून्यक कहा जाता है , जहां एक वास्तविक संख्या होगी । बहुपद का शून्यक ज्ञात करने के लिए हम उस बहुपद को शून्य के बराबर रखते हैं और उसमें चर का मान ज्ञात करते हैं। चर का मान बहुपद का शून्यक या मूल कहलाता हैं, जो बहुपद की घात पर निर्भर करता है। यदि बहुपद की घात है, तो एक शून्यक होगा और यदि घात है, तो दो शून्यक होंगे । किसी बहुपद में चर से गुणा की जाने वाली वास्तविक संख्या को उसका गुणांक कहा जाता है ।
रैखिक बहुपद के शून्यकों और गुणांको में संबंध
यदि , का एक शून्यक है ,
अर्थात,
अतः , रैखिक बहुपद का शून्यक है ।
(अचर पद) / का गुणांक
इस प्रकार, एक रैखिक बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।
उदाहरण
रैखिक बहुपद के शून्यकों और गुणांको में संबंध के प्रयोग से सिद्ध करें कि रैखिक बहुपद का शून्यक है ।
हल
मान लीजिए , रैखिक बहुपद का शून्यक है
हम जानते हैं , रैखिक बहुपद का शून्यक होता है ,
जहाँ , (अचर पद) / का गुणांक )
समीकरण से मान रखने पर ,
अतः , रैखिक बहुपद का शून्यक है ।
द्विघात बहुपद के शून्यकों और गुणांको में संबंध[1]
यदि और द्विघात बहुपद के शून्यक हैं , जहाँ वास्तविक संख्याएं है एवं हैं , और , ; के गुणनखंड हैं ,
, जहां एक अचर पद हैं ,
और अचर पद के गुणांकों की दोनों पक्षों पर तुलना करने पर ,
, ,
अतः हमें प्राप्त होता है कि ,
शून्यकों का योग ( का गुणांक/ का गुणांक )
शून्यकों का गुणनफल ( अचर पद / का गुणांक )
इस प्रकार, एक द्विघात बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।
उदाहरण
द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों और गुणांक के बीच संबंध सत्यापित करें ।
हल
उपर्युक्त बहुपद का शून्यक ज्ञात करने के लिए बहुपद को शून्य के समान रखते हैं ,
गुणनखंड करने पर ,
हम बहुपद को रूप में निरूपित कर सकते हैं ।
इस प्रकार उपर्युक्त बहुपद के शून्यक होंगे । ( )
बहुपद को से तुलना करने पर
शून्यकों का योग ,
( का गुणांक/ का गुणांक )
=
शून्यकों का गुणनफल ,
( अचर पद / का गुणांक )
=
अतः , द्विघात बहुपद के शून्यक होंगे ।
घन बहुपद के शून्यकों और गुणांको में संबंध
यदि , , घन बहुपद के शून्यक हैं , जहाँ वास्तविक संख्याएं है एवं हैं ,
( का गुणांक/ का गुणांक )
( का गुणांक/ का गुणांक )
( अचर पद/ का गुणांक )
इस प्रकार, एक घन बहुपद का शून्यक उसके गुणांकों से संबंधित होता है ।
उदाहरण
घन बहुपद के शून्यक ज्ञात कीजिए और शून्यकों और गुणांक के बीच संबंध सत्यापित करें ।
हल
उपर्युक्त बहुपद का शून्यक ज्ञात करने के लिए हम बहुपद को शून्य के समान रखते हैं ,
गुणनखंड करने पर ,
पदों को व्यवस्थित रूप में लिखने पर ,
पुनः ; गुणनखंड करने पर ,
अतः , हम बहुपद को रूप में निरूपित कर सकते हैं ।
इस प्रकार उपर्युक्त बहुपद के शून्यक होंगे । ( )
बहुपद को से तुलना करने पर
शून्यकों का योग ,
= ( का गुणांक/ का गुणांक )
एक समय पर दो शून्यको के गुणनफल का योग लेने पर ,
= ( का गुणांक/ का गुणांक )
शून्यकों का गुणनफल ,
( अचर पद/ का गुणांक )
अतः , उपर्युक्त बहुपद के शून्यक होंगे ।
अभ्यास प्रश्न
- द्विघात बहुपद के शून्यक ज्ञात कीजिए और शून्यकों और गुणांक के बीच संबंध सत्यापित करें ।
- एक द्विघात बहुपद ज्ञात कीजिए , जिसके शून्यकों का योग और गुणनफल क्रमशः और हैं ।
- सिद्ध करें कि घन बहुपद के शून्यक हैं और शून्यकों और गुणांको के बीच संबंध को सत्यापित करें ।
संदर्भ