एक ही रेखा के समानांतर रेखाएँ: Difference between revisions

From Vidyalayawiki

(added content)
No edit summary
Line 1: Line 1:
[[File:Transversal Line.jpg|alt=Fig. 1 - Transversal Line|thumb|Fig. 1 - Transversal Line]]
If two lines are parallel to the same line, will they be parallel to each other? Let us verify.
In the fig.1 line <math>m || </math> line <math>l </math> and line <math>n || </math> line <math>l </math> .
Let us draw a line <math>t </math> transversal for the lines <math>l,m,n </math>
We know that  line <math>m || </math> line <math>l </math> and line <math>n || </math> line <math>l </math> .
Hence <math>\angle 1=\angle 2 </math> and <math>\angle 1=\angle 3 </math> (Corresponding angles axiom)
But <math>\angle 2=\angle 3 </math> as they are corresponding angles
Therefore, we can say that  line <math>m || </math> line <math>n </math> (Converse of corresponding angles axiom)
This result can be stated in the form of the following theorem:
'''Theorem 1''': Lines which are parallel to the same line are parallel to each other.
== Example ==
From the given figure,  <math>AB ||CD </math>, <math>CD ||EF </math>, <math>EA \perp AB </math> and <math>\angle BEF =55^\circ </math>. Find the values of <math>x,y,z </math>.
[[File:Lines parallel to the same line - 1.jpg|alt=Fig. 2|none|thumb|Fig. 2]]
'''Solution''':
Given that <math>AB ||CD </math>, <math>CD ||EF </math>, <math>EA \perp AB </math> and <math>\angle BEF =55^\circ </math>
Therefore, <math>y + 55^\circ =180^\circ </math> (Interior angles on the same side of transversal <math>ED </math>)
Hence, <math>y =180^\circ -55^\circ =125^\circ </math>
By using the corresponding angles axiom, <math>AB ||CD </math>, we can say that <math>x=y </math>.
Therefore, the value of <math>x =125^\circ </math>
Since, <math>AB ||CD </math> and <math>CD ||EF </math>, therefore <math>AB ||EF </math>.
So, we can write: <math>\angle FEA + \angle EAB=180^\circ </math>(Interior angles on the same side of transversal <math>EA </math>)
<math>55^\circ+z+90^\circ=180^\circ </math>
<math>z=180^\circ-90^\circ-55^\circ = 35^\circ </math>
Therefore, the values of <math>x,y,z </math> are <math>125^\circ,125^\circ,35^\circ </math> respectively.
[[File:Transversal Line.jpg|alt=Fig. 1 - Transversal Line|thumb|चित्र -1  अनुप्रस्थ रेखा]]
[[File:Transversal Line.jpg|alt=Fig. 1 - Transversal Line|thumb|चित्र -1  अनुप्रस्थ रेखा]]
यदि दो रेखाएँ एक ही रेखा के समानान्तर हों तो क्या वे एक-दूसरे के समानान्तर होंगी? आइए सत्यापित करें।
यदि दो रेखाएँ एक ही रेखा के समानान्तर हों तो क्या वे एक-दूसरे के समानान्तर होंगी? आइए सत्यापित करें।

Revision as of 12:11, 3 November 2024

Fig. 1 - Transversal Line
Fig. 1 - Transversal Line

If two lines are parallel to the same line, will they be parallel to each other? Let us verify.

In the fig.1 line line and line line .

Let us draw a line transversal for the lines

We know that line line and line line .

Hence and (Corresponding angles axiom)

But as they are corresponding angles

Therefore, we can say that line line (Converse of corresponding angles axiom)

This result can be stated in the form of the following theorem:

Theorem 1: Lines which are parallel to the same line are parallel to each other.

Example

From the given figure, , , and . Find the values of .

Fig. 2
Fig. 2

Solution:

Given that , , and

Therefore, (Interior angles on the same side of transversal )

Hence,

By using the corresponding angles axiom, , we can say that .

Therefore, the value of

Since, and , therefore .

So, we can write: (Interior angles on the same side of transversal )

Therefore, the values of are respectively.


Fig. 1 - Transversal Line
चित्र -1 अनुप्रस्थ रेखा

यदि दो रेखाएँ एक ही रेखा के समानान्तर हों तो क्या वे एक-दूसरे के समानान्तर होंगी? आइए सत्यापित करें।

चित्र-1 में रेखा रेखा और रेखा रेखा

आइए हम रेखाओं के लिए एक रेखा अनुप्रस्थ रेखा खींचें

हम जानते हैं कि रेखा रेखा और रेखा रेखा है।

अतः और (संगत कोण अभिगृहीत)

परंतु क्योंकि वे संगत कोण हैं

अतः, हम कह सकते हैं कि रेखा रेखा (संगत कोण अभिगृहीत का विलोम)

इस परिणाम को निम्नलिखित प्रमेय के रूप में बताया जा सकता है:

प्रमेय 1: वे रेखाएँ जो एक ही रेखा के समानान्तर होती हैं, एक दूसरे के समानान्तर होती हैं।