वास्तविक संख्याओं के समुच्चय के उपसमुच्चय: Difference between revisions

From Vidyalayawiki

(New Mathematics Class11 Hindi Page Created)
 
(added the category)
Line 42: Line 42:


अतः T = {x xe R और x Q = R - Q अर्थात् वह सभी वास्तविक संख्याएँ जो परिमेय नहीं है। T के सदस्यों में √2√5 और आदि सम्मिलित हैं। इन समुच्चयों के मध्य कुछ स्पष्ट संबंध इस प्रकार हैं; NC ZCQ.QCR, TCR, NT.
अतः T = {x xe R और x Q = R - Q अर्थात् वह सभी वास्तविक संख्याएँ जो परिमेय नहीं है। T के सदस्यों में √2√5 और आदि सम्मिलित हैं। इन समुच्चयों के मध्य कुछ स्पष्ट संबंध इस प्रकार हैं; NC ZCQ.QCR, TCR, NT.
[[Category:समुच्चय]]
[[Category:कक्षा-11]]
[[Category:गणित]]

Revision as of 11:49, 6 November 2024

नोट कीजिए कि किसी समुच्चय का एक अवयव उस समुच्चय का उपसमुच्चय नहीं हो सकता है। 1.6.1 वास्तविक संख्याओं के समुच्चय उपसमुच्चय

जैसा कि अनुच्छेद 1.6 से स्पष्ट होता है कि समुच्चय R के बहुत से महत्वपूर्ण उपसमुच्चय हैं। इनमें से कुछ के नाम हम नीचे दे रहे हैं:

प्राकृत संख्याओं का समुच्चय पूर्णांकों का समुच्चय

N = {1, 2, 3, 4, 5,...}

Z={..., -3, -2, -1, 0, 1, 2, 3, ...}

परिमेय संख्याओं का समुच्चय Q = {xx = -=2,p,ge Z तथा q≠ 0}, जिनको इस प्रकार पढ़ते हैं:

“Q उन सभी संख्याओं x का समुच्चय इस प्रकार है, कि x भागफल 2, के बराबर है, जहाँ p और

q पूर्णांक है और q शून्य नहीं है।" Q के अवयवों में – 5 (जिसे

है)

नात

3

517

(जिसे

72

q

से भी प्रदर्शित किया जा सकता

से भी प्रदर्शित किया जा सकता है) और

-

आदि सम्मिलित हैं।

समुच्चय 13

अपरिमेय संख्याओं का समुच्चय, जिसे T से निरूपित करते हैं, शेष अन्य वास्तविक संख्याओं (परिमेय संख्याओं को छोड़कर) से मिलकर बनता है।

अतः T = {x xe R और x Q = R - Q अर्थात् वह सभी वास्तविक संख्याएँ जो परिमेय नहीं है। T के सदस्यों में √2√5 और आदि सम्मिलित हैं। इन समुच्चयों के मध्य कुछ स्पष्ट संबंध इस प्रकार हैं; NC ZCQ.QCR, TCR, NT.