परिमित समांतर श्रेढ़ीयाँ: Difference between revisions
Ramamurthy (talk | contribs) |
Jaya agarwal (talk | contribs) |
||
Line 34: | Line 34: | ||
पदों की संख्या <math>n=6</math> | पदों की संख्या <math>n=6</math> | ||
सूत्र , | परिमित समांतर श्रेढ़ीयो के सूत्र द्वारा , | ||
<math>S_n=\frac{n}{2}(a+l)</math> | <math>S_n=\frac{n}{2}(a+l)</math> | ||
Line 63: | Line 63: | ||
पदों की संख्या <math>n=500</math> | पदों की संख्या <math>n=500</math> | ||
सूत्र , | परिमित समांतर श्रेढ़ीयो के सूत्र द्वारा , | ||
<math>S_n=\frac{n}{2}(a+l)</math> | <math>S_n=\frac{n}{2}(a+l)</math> |
Revision as of 12:47, 16 September 2023
जैसा कि हमें नाम से ही स्पष्ट है, ऐसी समांतर श्रेढ़ीयाँ जिसमे परिमित अर्थात सीमित पद होते हैं, उन्हें हम परिमित समांतर श्रेढ़ीयाँ कहते हैं । अंकगणितीय श्रेढ़ीयो के एक सीमित भाग को परिमित अंकगणितीय श्रेढ़ीयो के अंतर्गत रखा जाता है । एक परिमित समांतर श्रेढ़ी में अंतिम पद सदैव होता है ।
उदाहरण
उपर्युक्त उदाहरणो में समांतर श्रेढ़ीयो का प्रथम पद क्रमशः तथा एवं सार्व अंतर तथा है ,तथा इन श्रेढ़ीयो में सीमित अर्थात परिमित पद है, इसलिए इन श्रेढ़ीयो को हम परिमित समांतर श्रेढियां कहेंगे ।
परिमित समांतर श्रेढ़ीयो के योग के लिए सूत्र
परिमित समांतर श्रेढ़ीयो के योग के लिए सूत्र निम्नवत है
परिमित समांतर श्रेढ़ी के पदों का योग
पहला पद
अंतिम पद
पदों की संख्या
उदाहरण 1
परिमित समांतर श्रेढ़ी का योग ज्ञात करें
हल
पहला पद
अंतिम पद
पदों की संख्या
परिमित समांतर श्रेढ़ीयो के सूत्र द्वारा ,
अतः , उपर्युक्त परिमित समांतर श्रेढ़ी का योग है ।
उदाहरण 2
प्रथम धनात्मक पूर्णांकों का योग ज्ञात कीजिए ।
हल
प्रथम धनात्मक पूर्णांक है
प्रथम धनात्मक पूर्णांकों का योग होगा
पहला पद
अंतिम पद
पदों की संख्या
परिमित समांतर श्रेढ़ीयो के सूत्र द्वारा ,
अतः , प्रथम धनात्मक पूर्णांकों का योग है ।
अभ्यास प्रश्न
- किसी परिमित समांतर श्रेढ़ी का योग है , तथा उसका पहला पद और अंतिम पद है, उस परिमित समांतर श्रेढ़ी में पदों की संख्या ज्ञात करें ?
- प्रथम धनात्मक पूर्णांकों का योग ज्ञात कीजिए ।