त्रिकोणमिति: Difference between revisions
(Added contents of trigonometry.) |
m (Added mathematical expressions) |
||
Line 1: | Line 1: | ||
त्रिकोणमिति मैथ की वह ब्रांच है, जो एक समकोण त्रिभुज की भुजाओं और कोणों से संबंधित है। यह ग्रीक शब्द ‘त्रि’ से लिया गया है, जिसका अर्थ है तीन, ‘गॉन’ जिसका अर्थ है भुजाएं, ‘मेट्रोन’ का अर्थ है माप। इसका उपयोग शुरुआती खगोलविदों और मिस्र और बेबीलोन में किया गया था। इस ब्लॉग में हम त्रिकोणमिति क्या है यह जानेंगे । | |||
त्रिकोणमिति मैथ की वह ब्रांच है, जो एक समकोण त्रिभुज की भुजाओं और कोणों से संबंधित है। यह ग्रीक शब्द ‘त्रि’ से लिया गया है, जिसका अर्थ है तीन, ‘गॉन’ जिसका अर्थ है भुजाएं, ‘मेट्रोन’ का अर्थ है माप। इसका उपयोग शुरुआती खगोलविदों और मिस्र और बेबीलोन में किया गया था। इस ब्लॉग में हम त्रिकोणमिति क्या है यह जानेंगे । | |||
== त्रिकोणमिति क्या है? == | == त्रिकोणमिति क्या है? == | ||
विभिन्न कोणों (0 से 90 डिग्री) के लिए | विभिन्न कोणों (0 से 90 डिग्री) के लिए त्रिकोणमिति और त्रिकोणमितीय अनुपातों का प्रयोग करने के बाद इसका उपयोग आर्किटेक्चर, इंजीनियरिंग, भौतिक विज्ञान जैसे सब्जेक्ट्स में देख सकते हैं। त्रिकोणमिति गणित की वह शाखा है, जिसमें त्रिभुज की तीनों भुजाओं और तीनों कोणों की स्टडी की जाती है। त्त्रिकोणमिति का अर्थ त्रिभुज की तीनों भुजाओं का माप होता है। | ||
== त्रिकोणमिति की खोज किसने की थी? == | == त्रिकोणमिति की खोज किसने की थी? == | ||
Line 18: | Line 17: | ||
किसी समकोण त्रिभुज में किन्हीं दो भुजाओं के अनुपात को त्रिकोणमितीय अनुपात या त्रिकोणमितीय रेश्यो कहते हैं।नीचे त्रिकोणमिति रेश्यो के बारे में बताया गया है- | किसी समकोण त्रिभुज में किन्हीं दो भुजाओं के अनुपात को त्रिकोणमितीय अनुपात या त्रिकोणमितीय रेश्यो कहते हैं।नीचे त्रिकोणमिति रेश्यो के बारे में बताया गया है- | ||
* sin | * <math>sin\theta</math> = लंब/कर्ण | ||
* cos | * <math>cos\theta</math> = आधार/कर्ण | ||
* tan | * <math>tan\theta</math> = लम्ब/आधार | ||
* cosec | * <math>cosec\theta</math> = कर्ण/लंब | ||
* sec | * <math>sec\theta</math> = कर्ण/आधार | ||
* cot | * <math>cot\theta</math> = आधार/लंब। | ||
== पाइथागोरस प्रमेय का सूत्र क्या है? == | == पाइथागोरस प्रमेय का सूत्र क्या है? == |
Revision as of 16:56, 25 September 2023
त्रिकोणमिति मैथ की वह ब्रांच है, जो एक समकोण त्रिभुज की भुजाओं और कोणों से संबंधित है। यह ग्रीक शब्द ‘त्रि’ से लिया गया है, जिसका अर्थ है तीन, ‘गॉन’ जिसका अर्थ है भुजाएं, ‘मेट्रोन’ का अर्थ है माप। इसका उपयोग शुरुआती खगोलविदों और मिस्र और बेबीलोन में किया गया था। इस ब्लॉग में हम त्रिकोणमिति क्या है यह जानेंगे ।
त्रिकोणमिति क्या है?
विभिन्न कोणों (0 से 90 डिग्री) के लिए त्रिकोणमिति और त्रिकोणमितीय अनुपातों का प्रयोग करने के बाद इसका उपयोग आर्किटेक्चर, इंजीनियरिंग, भौतिक विज्ञान जैसे सब्जेक्ट्स में देख सकते हैं। त्रिकोणमिति गणित की वह शाखा है, जिसमें त्रिभुज की तीनों भुजाओं और तीनों कोणों की स्टडी की जाती है। त्त्रिकोणमिति का अर्थ त्रिभुज की तीनों भुजाओं का माप होता है।
त्रिकोणमिति की खोज किसने की थी?
त्रिकोणमिति का आविष्कार और प्रयोग प्राचीन भारत में किया गया। त्रिकोणमिति के जनक, शून्य और दशमलव का महत्व बताने वाले विश्व के महान गणितज्ञ और खगोलशास्त्री आर्यभट्ट हैं।
त्रिकोणमिति का उपयोग
त्रिकोणमिति का उपयोग मैथ, साइंस और टेक्नोलॉजी में किया जाता है। त्रिकोणमिति की स्टडी के बाद हम इसका उपयोग निम्न चीजों में देखते हैं-
- खेतों, प्लॉट्स और क्षेत्रों को मापना
- सिरेमिक टाइल की माप
त्रिकोणमिति रेश्यो किन्हें कहते हैं?
किसी समकोण त्रिभुज में किन्हीं दो भुजाओं के अनुपात को त्रिकोणमितीय अनुपात या त्रिकोणमितीय रेश्यो कहते हैं।नीचे त्रिकोणमिति रेश्यो के बारे में बताया गया है-
- = लंब/कर्ण
- = आधार/कर्ण
- = लम्ब/आधार
- = कर्ण/लंब
- = कर्ण/आधार
- = आधार/लंब।
पाइथागोरस प्रमेय का सूत्र क्या है?
पाइथागोरस प्रमेय का सूत्र कर्ण2 = आधार2 + लंब2