विभाजन सूत्र: Difference between revisions

From Vidyalayawiki

(added content)
(formulas)
Line 17: Line 17:


स्पष्टतः चर्तुभुज <math>LNRS</math> और <math>NMTR</math> समांतर चर्तुभुज हैं। त्रिभुजों <math>PSR</math> और <math>QTR</math> स्पष्टतः समरूप हैं। इसलिए     
स्पष्टतः चर्तुभुज <math>LNRS</math> और <math>NMTR</math> समांतर चर्तुभुज हैं। त्रिभुजों <math>PSR</math> और <math>QTR</math> स्पष्टतः समरूप हैं। इसलिए     
<math>\frac{m}{n}=\frac{PR}{QR}=\frac{SP}{QT}=\frac{SL-PL}{QM-TM}=\frac{NR-PL}{QM-NR}=\frac{z-z_1}{z_2-z}</math>   


इस प्रकार   
इस प्रकार   


PR SP SL-PL NR-PL 
<math>Z=\frac{mz_2+nz_1}{m+n}</math> 
 
QR QT QM-TM QM-NR 
 
ठीक इसी प्रकार XZ - तल और YZ - तल पर लंब खींचने पर हमें प्राप्त होता है,
 
my2 + ny1
 
y =  
 
और x =
 
mx2 + nx1
 
m+n
 
m+ n
 
अत: बिंदु R जो बिंदु P (x, y, z ) और Q (x2, J2, 22 ) को मिलाने वाले रेखा खंड को mn के अनुपात में अंत: विभाजित करता है, के निर्देशांक हैं,
 
mx2 + nx1 my1⁄2 +ny1 mz2 +nz1
 
m+n
 
m+n
 
m+n  


यदि बिंदु R, रेखा खंड PQ को mn अनुपात में बाह्य विभाजित करता हो तो इसके निर्देशांक उपर्युक्त सूत्र में " को " से विस्थापित करके प्राप्त किए जाते हैं। इस प्रकार R के निर्देशांक होंगें,  
ठीक इसी प्रकार <math>XZ</math>- तल और <math>YZ</math>- तल पर लंब खींचने पर हमें प्राप्त होता है,  


n  
<math>y=\frac{my_2 +ny_1}{m+n}</math> और  <math>x=\frac{mx_2+nx_1}{m+n}</math>


mx2-nx1 mу2-ny1 mz2-nz1
अत: बिंदु <math>R</math> जो बिंदु <math>P (x_1, y_1, z_1 )</math> और <math>Q (x_2, y_2, z_2 )</math> को मिलाने वाले रेखा खंड को <math>m:n</math> के अनुपात में अंत: विभाजित करता है, के निर्देशांक हैं,


m-n  
<math>\Bigl(\frac{mx_2+nx_1}{m+n},\frac{my_2 +ny_1}{m+n},\frac{mz_2 +nz_1}{m+n}\Bigr)</math>


m-n  
यदि बिंदु <math>R</math>, रेखा खंड <math>PQ</math> को <math>m:n</math> अनुपात में बाह्य विभाजित करता हो तो इसके निर्देशांक उपर्युक्त सूत्र में " को " से विस्थापित करके प्राप्त किए जाते हैं। इस प्रकार R के निर्देशांक होंगें,


m-n  
<math>\Bigl(\frac{mx_2-nx_1}{m-n},\frac{my_2-ny_1}{m-n},\frac{mz_2-nz_1}{m-n}\Bigr)</math>


स्थिति 1 मध्य-बिंदु के निर्देशांक यदि R, रेखाखंड PQ का मध्य-बिंदु है तो  
'''स्थिति-1''' मध्य-बिंदु के निर्देशांक यदि R, रेखाखंड PQ का मध्य-बिंदु है तो  


m  
m  
Line 86: Line 62:
ये P (x, y, z) और Q (X2 Y2Z2)  
ये P (x, y, z) और Q (X2 Y2Z2)  


स्थिति 2 रेखा खंड PQ को k : 1 के अनुपात में अंतः विभाजित करने वाले बिंदु R के निर्देशांक  
'''स्थिति-2'''  रेखा खंड PQ को k : 1 के अनुपात में अंतः विभाजित करने वाले बिंदु R के निर्देशांक  


m  
m  

Revision as of 15:11, 25 October 2024

रेखाखंड पर एक बिंदु इसे दो भागों में विभाजित करता है जो बराबर या नहीं हो सकते हैं। वह अनुपात जिसमें बिंदु दिए गए रेखाखंड को विभाजित करता है, पाया जा सकता है यदि हम उस बिंदु के निर्देशांक जानते हैं। साथ ही, विभाजन बिंदु को खोजना संभव है यदि हम दो बिंदुओं को जोड़ने वाले रेखाखंड के दिए गए अनुपात को जानते हैं। निर्देशांक ज्यामिति में एक अनुभाग सूत्र की सहायता से ये दो चीजें हासिल की जा सकती हैं।

अनुभाग सूत्र का उपयोग उस बिंदु के निर्देशांक निर्धारित करने के लिए किया जाता है जो दो बिंदुओं को जोड़कर एक रेखाखंड को दो भागों में विभाजित करता है, जैसे कि उनकी लंबाई का अनुपात है।

मान लीजिए और क्रमशः दो बिंदु और हैं, और वह बिंदु है जो रेखाखंड को के अनुपात में आंतरिक रूप से विभाजित करता है, तो बिंदु के निर्देशांक निर्धारित करने के लिए अनुभागीय सूत्र बनाएं जो इस प्रकार दिया गया है:


द्विविमीय ज्यामिति में हमने सीखा है कि किस प्रकार समकोणिक कार्टेशियन पद्धति में एक रेखा खंड को दिए अनुपात में अंत: विभाजित करने वाले बिंदु के निर्देशांक ज्ञात करते हैं।

अब हम इस संकल्पना का विस्तार त्रिविमीय ज्यामिति के लिए करते हैं।

मान लीजिए अंतरिक्ष में दो बिंदु हैं। माना रेखा खंड को अनुपात में अंत: विभाजित करता है। - तल पर , और लंब खींचिए । स्पष्टत: हैं तथा इन तीन लंबों के पाद - तल में स्थित हैं बिंदु L, और उस रेखा पर स्थित हैं जो उस तल और - तल के प्रतिच्छेदन से बनती है। बिंदु से रेखा के समांतर रेखा खींचिए | रेखा खींचे गए लंब के तल में स्थित है तथा रेखा (विस्तारित) को और को पर प्रतिच्छेदित करती है। जैसा चित्र में प्रदर्शित है।

चित्र

स्पष्टतः चर्तुभुज और समांतर चर्तुभुज हैं। त्रिभुजों और स्पष्टतः समरूप हैं। इसलिए

इस प्रकार

ठीक इसी प्रकार - तल और - तल पर लंब खींचने पर हमें प्राप्त होता है,

और

अत: बिंदु जो बिंदु और को मिलाने वाले रेखा खंड को के अनुपात में अंत: विभाजित करता है, के निर्देशांक हैं,

यदि बिंदु , रेखा खंड को अनुपात में बाह्य विभाजित करता हो तो इसके निर्देशांक उपर्युक्त सूत्र में " को " से विस्थापित करके प्राप्त किए जाते हैं। इस प्रकार R के निर्देशांक होंगें,

स्थिति-1 मध्य-बिंदु के निर्देशांक यदि R, रेखाखंड PQ का मध्य-बिंदु है तो

m

रखने पर

* + *2

x=

,) =

z=

और 21+22

2

को मिलाने वाली रेखा खंड के मध्य

-

प - बिंदु के निर्देशांक हैं।

ये P (x, y, z) और Q (X2 Y2Z2)

स्थिति-2 रेखा खंड PQ को k : 1 के अनुपात में अंतः विभाजित करने वाले बिंदु R के निर्देशांक

m

k = " रखने पर प्राप्त किए जा सकते हैं:

n

ew

(kx2+Xj ky2+91 kz2+Z1

l+k

1+k

1+k

यह परिणाम प्रायः दो बिंदुओं को मिलाने वाली रेखा पर व्यापक बिंदु संबंधी प्रश्नों के हल करने में प्रयुक्त होता है।