एक वृत्त के चाप द्वारा अंतरित कोण

From Vidyalayawiki

Revision as of 17:55, 17 September 2024 by Mani (talk | contribs)

We know that the end points of a chord other than the diameter of a circle divides it into two arcs, namely the major arc and the minor arc. In this article, we will discuss the theorem related to the angle subtended by an arc of a circle and its proof with complete explanation.

Angle Subtended by an Arc of a Circle – Theorem and Proof

Theorem:

The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Proof:

Consider a circle with centre . Here the arc of the circle subtends angle at Centre and at a point on the remaining part of the circle.

To prove:

To prove this, join and extend it to point .

There are two general cases while proving this theorem.

Case 1:

Fig. 1
Fig. 1

Consider a triangle

Here, (Radii)

Since, the angles opposite to the equal sides are equal,

Also, by using the exterior angle property (exterior angle is the sum of interior opposite angles),

We can write,

By using

Similarly, consider another triangle ,

(Radii)

As the angles opposite to the equal sides are equal,

Similarly, by using the exterior angle property, we get

(using )

Adding and we get,

Hence, case (1) is proved.

Case 2:

Fig. 2
Fig. 2

To prove for this case, we can follow the steps as same as for case . But while adding and, we have to follow the below steps.

Reflex angle (Since, is a Major arc)

Reflex angle .

Hence, proved.