गुणनखण्डों द्वारा द्विघात समीकरण का हल

From Vidyalayawiki

द्विघात समीकरण का हल ज्ञात करने की अनेक विधियां हैं , उनमें से एक विधि है ; गुणनखंड विधि । इस इकाई में हम गुणनखण्डों द्वारा द्विघात समीकरण को हल करना सीखेंगे। एक वास्तविक संख्या को द्विघात समीकरण[1] , का मूल कहा जाता है , यदि होता है। हम यह भी कहते हैं कि द्विघात समीकरण का हल है , अर्थात वह द्विघात समीकरण , को संतुष्ट करता है । द्विघात बहुपद के शून्यक और द्विघात समीकरण का मूल समान होता हैं। किसी भी द्विघात समीकरण के अधिकतम दो मूल हो सकते हैं ।

द्विघात समीकरणों को गुणनखण्डों द्वारा हल करने की विधि

द्विघात समीकरण को हल करने के कुछ प्रमुख क्रमबद्ध चरण होते हैं , आईए हम उनके बारे में  जानते हैं ;

  1. दिए गए द्विघात समीकरण को सामान्य रूप में परिवर्तित करें ।
  2. के गुणांक और अचर पद के गुणनफल का गुणनखंड करें ।
  3. मध्य पद के गुणांक को चरण में प्राप्त कारकों के योग या अंतर के रूप में व्यक्त करें ।
  4. प्रत्येक गुणनखंड को के बराबर करें ।

इस प्रकार हम द्विघात समीकरणों के हल को प्राप्त कर सकते हैं ।

उदाहरण 1

द्विघात समीकरण के मूल ज्ञात करें ।

हल

हम मध्य पद का गुणनखंड रूप में करेंगे , क्योंकि

प्रत्येक गुणनखंड को के बराबर करने पर ,

अतः , द्विघात समीकरण के मूल हैं ।

उदाहरण 2

द्विघात समीकरण के मूल ज्ञात करें ।

हल

हम मध्य पद का गुणनखंड रूप में करेंगे , क्योंकि

प्रत्येक गुणनखंड को के बराबर करने पर ,

अतः , द्विघात समीकरण के मूल हैं ।

उदाहरण 3

दो क्रमागत धनात्मक विषम संख्याएं ज्ञात कीजिए , जिनका गुणनफल है ।

हल

मान लीजिए , दो क्रमागत धनात्मक विषम संख्याएं है ।

प्रश्न में दिए गए कथन के अनुसार , उनका गुणनफल 483 है

उपर्युक्त समीकरण का विस्तृत रूप लिखने पर ,

सभी पदों को दाएं पक्ष में स्थानांतरित करने पर ,

मध्य पद का गुणनखंड करने पर ,

प्रत्येक गुणनखंड को के बराबर करने पर ,

[ नकारात्मक चिन्ह को छोड़ने पर क्योंकि प्रश्न में धनात्मक संख्याएं दी गई है ]

अतः , दो क्रमागत धनात्मक विषम संख्याएं है , (नकारात्मक चिन्ह को छोड़ने पर क्योंकि प्रश्न में धनात्मक संख्याएं दी गई है ) जिनका गुणनफल है ।

अभ्यास प्रश्न

  1. द्विघात समीकरण के मूल ज्ञात करें ।
  2. द्विघात समीकरण के मूल ज्ञात करें ।
  3. दो क्रमागत धनात्मक पूर्णांकों का योग ज्ञात कीजिए जिनका वर्ग है ।

संदर्भ

  1. MATHEMATICS(NCERT) (REVISED ed.). pp. 42–44.