चुम्बकीय दिक्पात

From Vidyalayawiki

Listen

Magnetic declination

चुंबकीय दिक्पात (झुकाव) वास्तविक भौगोलिक उत्तर की दिशा और आपके कंपास द्वारा इंगित दिशा, जो चुंबकीय उत्तर है, के बीच का कोण है। हम प्रतीक "θ" (थीटा) का उपयोग करके चुंबकीय झुकाव का प्रतिनिधित्व कर सकते हैं।

पृथ्वी की सतह पर एक विशिष्ट स्थान पर खड़े हैं। इस स्थान पर, विचार करने के लिए दो उत्तर हैं: भौगोलिक उत्तर (GN) और चुंबकीय उत्तर (MN)।

भौगोलिक उत्तर की दिशा को एक इकाई वेक्टर द्वारा दर्शाया जाता है, इसे "N" नामांकित कीया जा सकता है। चुंबकीय उत्तर की दिशा को एक इकाई वेक्टर द्वारा भी दर्शाया जाता है, इसे "M" माना जा सकता है ।

अब, चुंबकीय झुकाव कोण "θ" वेक्टर गणित, विशेष रूप से डॉट उत्पाद का उपयोग करके पाया जा सकता है। दो वैक्टर "A" और "B" का डॉट उत्पाद इस प्रकार दिया गया है:

A · B = |A| * |B| * cos (α)

जहां "α" सदिश "A" और "B" के बीच का कोण है।

यदि भौगोलिक उत्तर वेक्टर "N" और चुंबकीय उत्तर वेक्टर "M" के बीच का कोण "θ" खोजा जाना है,तो, समीकरण बन जाता है:

N · M = |N|* |M| * cos(θ)

चूँकि "N" और "M" दोनों इकाई सदिश हैं (अर्थात् उनका परिमाण 1 है), समीकरण इस प्रकार सरल हो जाता है:

cos(θ) = N · M

अब, यदि त्रि-आयामी अंतरिक्ष में भौगोलिक उत्तर वेक्टर "N" और चुंबकीय उत्तर वेक्टर "M" के घटकों (यानी, उनके एक्स, वाई और जेड घटकों) ज्ञात हैं, तो उनके डॉट उत्पाद की गणना की जा सकती है और "cos(θ)" का मान पाया जा सकता है।

"cos(θ)" का मान होने पर, चुंबकीय झुकाव कोण "θ" खोजने के लिए व्युत्क्रम कोज्या फलन (कोसाइन फ़ंक्शन) (cos^(-1)) का उपयोग कर सकते हैं:

θ = cos^(-1)(N · M)

यह आपको पृथ्वी पर आपके विशिष्ट स्थान पर भौगोलिक उत्तर और चुंबकीय उत्तर के बीच का कोण (डिग्री में) देगा।

यह ध्यान रखना महत्वपूर्ण है कि चुंबकीय झुकाव पृथ्वी पर आपके स्थान के आधार पर भिन्न होता है और समय के साथ पृथ्वी के चुंबकीय क्षेत्र में बदलाव के कारण बदलता है। इसलिए, कंपास का उपयोग करके सटीक नेविगेशन के लिए, आपके विशिष्ट स्थान के लिए अद्यतन चुंबकीय झुकाव मान होना आवश्यक है।