दो चरों में रैखिक समीकरण

From Vidyalayawiki

कोई भी समीकरण जिसे हम के रूप में लिख सकते हैं , जहां वास्तविक संख्याएं हैं और है , दो चर वाला रैखिक समीकरण कहलाता है । जैसा कि हमें नाम से ही स्पष्ट है , इन समीकरणों में दो चर होते हैं तथा दोनों की घात एक होती है । इस इकाई में हम दो चरों वाले रैखिक समीकरणों के बारे में ज्ञान प्राप्त करेंगे ।

उदाहरण

उपयुक्त उदाहरणो में समीकरणों में दो चर है तथा दोनों की घात एक है , अतः यह दो चरों वाले रैखिक समीकरणों का उदाहरण है ।

दो चरों में रैखिक समीकरण के गुण

दो चरों वाले रैखिक समीकरणों के गुण निम्नलिखित है ;

  1. दो चर वाले रैखिक समीकरण के लिए अनंत रूप से कई हल होते हैं ।
  2. दो चर वाले प्रत्येक रैखिक समीकरण का आरेख एक सीधी रेखा होता है ।
  3. दो चर में रैखिक समीकरण के आरेख पर प्रत्येक बिंदु रैखिक समीकरण का हल होता है ।

उदाहरण 1

निम्नलिखित प्रत्येक समीकरण को के रूप में लिखें और और के मान ज्ञात करें[1]

हल

1) समीकरण को के रूप में लिखने पर ,

दो चरों वाले रैखिक समीकरण के मानक रूप से तुलना करने पर ,

, ,

2) समीकरण को के रूप में लिखने पर ,

दो चरों वाले रैखिक समीकरण के मानक रूप से तुलना करने पर ,

, ,

3) समीकरण को के रूप में लिखने पर ,

दो चरों वाले रैखिक समीकरण के मानक रूप से तुलना करने पर ,

, ,

4) समीकरण को के रूप में लिखने पर ,

दो चरों वाले रैखिक समीकरण के मानक रूप से तुलना करने पर ,

, ,

5) समीकरण को के रूप में लिखने पर ,

दो चरों वाले रैखिक समीकरण के मानक रूप से तुलना करने पर ,

, ,

उदाहरण 2

एक मेज की कीमत एक कुर्सी की कीमत से गुना है । इस कथन को दर्शाने के लिए दो चर में एक रैखिक समीकरण लिखें ।

हल

माना कि कुर्सी की कीमत है , और माना मेज की कीमत है ,

प्रश्न में दिए गए कथन के अनुसार ,एक मेज की कीमत एक कुर्सी की कीमत से गुना है ;

व्यवस्थित रूप में लिखने पर ,

अतः , दिए गए कथन का दो चर में एक रैखिक समीकरण होगा ।

उदाहरण 3

दो चरों में निम्नलिखित रैखिक समीकरण के लिए हल ज्ञात कीजिये ।

हल

दी गई समीकरण ,

पहला हल ज्ञात करने के लिए हम समीकरण में किसी भी एक चर का मान रखेंगे ,

समीकरण में रखने पर ,

अतः , समीकरण का पहला हल , होगा ।

दूसरा हल ज्ञात करने के लिए हम समीकरण में किसी भी एक चर का मान  रखेंगे ,

समीकरण में रखने पर ,

अतः , समीकरण का दूसरा हल , होगा ।

अतः , समीकरण के हल एवं होंगे । इसी प्रकार हम के विभिन्न मान के लिए के विभिन्न मान निकाल सकते हैं । अतः , यह स्पष्ट है कि दो चर वाले रैखिक समीकरण के लिए अनंत रूप से अनेक हल होते हैं ।

संदर्भ

  1. MATHEMATICS ( NCERT 9) (Revised ed.). pp. 55–58.