प्राकृतिक संख्याएँ
प्राकृतिक संख्याएँ वे संख्याएँ होती हैं जिनका उपयोग हम गिनने के लिए करते हैं जो वास्तविक संख्याओं का भाग होती हैं।
प्राकृतिक संख्याएँ धनात्मक पूर्णांक होती हैं जो 1 से प्रारंभ होती हैं और अनंत पर समाप्त होती हैं।
उदाहरण:
शून्य कोई प्राकृतिक संख्या नहीं है. किसी भी वस्तु की गिनती के लिए हम शून्य से नहीं बल्कि 1 से गिनती प्रारंभ करते हैं।
प्राकृतिक संख्याओं का समुच्चय
समुच्चय अवयवों (इस संदर्भ में संख्याएँ) का एक संग्रह है। प्राकृत संख्याओं के समुच्चय को N द्वारा निरूपित किया जाता है।
विषम प्राकृतिक संख्याएँ
विषम प्राकृतिक संख्याएँ वे प्राकृतिक संख्याएँ हैं जो 2 से पूर्णतः विभाज्य नहीं होती हैं
उदाहरण:
जब 3 को 2 से विभाजित किया जाता है
सम प्राकृतिक संख्याएँ
सम प्राकृतिक संख्याएँ वे प्राकृतिक संख्याएँ हैं जो 2 से पूर्णतः विभाज्य होती हैं
उदाहरण:
जब 4 को 2 से विभाजित किया जाता है
प्राकृतिक संख्याओं के गुण
प्राकृतिक संख्याओं पर चार संक्रियाएँ, जोड़, घटाव, गुणा और भाग, प्राकृतिक संख्याओं के चार मुख्य गुणों की ओर ले जाती हैं, जैसा कि नीचे दिखाया गया है:
- समापन गुणधर्म
- साहचर्य गुणधर्म
- क्रमचयी गुणधर्म
- वितरणात्मक गुणधर्म
समापन गुणधर्म
दो प्राकृतिक संख्याओं का योग और गुणनफल सदैव एक प्राकृतिक संख्या होती है। यह गुण जोड़ और गुणा पर लागू होता है लेकिन घटाव और भाग पर लागू नहीं होता है।
- योग का समापन गुणधर्म: ⇒ , . इससे पता चलता है कि प्राकृतिक संख्याओं का योग सदैव एक प्राकृतिक संख्या होती है।
- गुणन का समापन गुणधर्म: ⇒ , . इससे पता चलता है कि प्राकृतिक संख्याओं का गुणनफल सदैव एक प्राकृतिक संख्या होती है।
साहचर्य गुणधर्म
किसी भी तीन प्राकृतिक संख्याओं का योग या गुणनफल वही रहता है, भले ही संख्याओं का समूह बदल दिया जाए। यह गुण जोड़ और गुणा पर लागू होता है, लेकिन घटाव और भाग पर लागू नहीं होता।
- योग का साहचर्य गुणधर्म: ⇒ .
- गुणन का साहचर्य गुणधर्म: ⇒ .
क्रमचयी गुणधर्म
दो प्राकृतिक संख्याओं का योग या गुणनफल संख्याओं के क्रम को बदलने के बाद भी वही रहता है। यह गुण जोड़ और गुणा पर लागू होता है लेकिन घटाव और भाग पर लागू नहीं होता है।
- योग का क्रमचयी गुणधर्म: ⇒ .
- योग का क्रमचयी गुणधर्म: ⇒ .
वितरणात्मक गुणधर्म
वितरणात्मक गुणधर्म को जोड़ और घटाव पर गुणन के वितरणात्मक नियम के रूप में जाना जाता है। यह बताता है कि एक अभिव्यक्ति जो के रूप में दी गई है .
यह वितरणात्मक गुणधर्म , जो घटाने पर भी लागू होता है, इस प्रकार व्यक्त किया जाता है: . इसका अर्थ है संकार्य ' अन्य दो संकार्यों के बीच वितरित किया जाता है।
- योग पर गुणन का वितरणात्मक गुण है .
- गुणन पर घटाव का वितरणात्मक गुण है