रैखिक समीकरण के हल

From Vidyalayawiki

एक रैखिक समीकरण के समाधान या हल को चर के सभी संभावित मानों के समुच्चय के रूप में परिभाषित किया जाता है जो दिए गए रैखिक समीकरण को संतुष्ट करते हैं।

रैखिक समीकरणों के हल के प्रकार

रैखिक समीकरणों के समुच्चय के 3 संभावित प्रकार के समाधान हैं और नीचे उल्लिखित हैं।

  • अद्वितीय हल
  • कोई हल नहीं
  • अपरिमित रूप से अनेक हल

अद्वितीय हल

एक चर वाले रैखिक समीकरण का सदैव एक अद्वितीय हल होता है। एक रैखिक समीकरण का अद्वितीय हल यह दर्शाता है कि केवल एक ही बिंदु उपस्थित है, जिसे प्रतिस्थापित करने पर, L.H.S, R.H.S के समान हो जाता है। दो चरों में एक साथ रैखिक समीकरणों के विषय में, हल एक क्रमित युग्म होना चाहिए। इस स्थिति में, क्रमित युग्म समीकरणों के समुच्चय को संतुष्ट करेगा।

उदाहरण:

अत: दिए गए रैखिक समीकरण का अद्वितीय हल है।

कोई हल नहीं

यदि रैखिक समीकरणों के रेखांकन समानांतर हैं, तो रैखिक समीकरणों की प्रणाली का कोई हल नहीं है। इस स्थिति में, ऐसा कोई बिंदु मौजूद नहीं है कि कोई रेखाएं एक-दूसरे को नहीं काटती हों।

उदाहरण: समीकरणों and का हल ज्ञात करें ?

हल:

समीकरण and का कोई हल नहीं है।

रैखिक समीकरण और एक दूसरे के समानांतर हैं, और इसलिए, उनका कोई हल नहीं है।

अपरिमित रूप से अनेक हल

दो चरों वाले रैखिक समीकरण के अपरिमित रूप से अनेक हल होते हैं। रैखिक समीकरणों की प्रणाली के लिए, अनंत बिंदुओं का एक हल समुच्चय उपस्थित होता है जिसके लिए समीकरण का L.H.S R.H.S बन जाता है। अपरिमित अनेक हल वाले रैखिक समीकरणों की प्रणाली का रेखांकन उन सीधी रेखाओं का रेखांकन है जो एक दूसरे को अतिव्याप्ति(ओवरलैप) करती हैं।

उदाहरण: समीकरण के चार भिन्न-भिन्न हल ज्ञात करें ?

2 2 6
0 3 6
6 0 6
4 1 6

चार भिन्न-भिन्न हल इस प्रकार हैं