वास्तविक संख्याओं पर संक्रियाएँ

From Vidyalayawiki

यहां हम वास्तविक संख्याओं पर संक्रियाओं की विधि को सीखेंगे।

वास्तविक संख्याओं पर संक्रियाओं का नियम

  • एक परिमेय संख्या और अपरिमेय संख्या का योग या अंतर अपरिमेय होता है।
  • अपरिमेय संख्या के साथ एक गैर-शून्य परिमेय संख्या का गुणनफल या भागफल अपरिमेय संख्या होती है।
  • जब दो अपरिमेय संख्याओं को जोड़ा, घटाया, गुणा या विभाजित किया जाता है, तो परिणाम एक परिमेय या अपरिमेय संख्या हो सकती है।

यदि और धनात्मक वास्तविक संख्याएँ हैं, तो हमारे पास है,

गणितीय संक्रियाएँ क्या हैं?

चार मूल गणितीय संक्रियाएँ जोड़ (), घटाव (), गुणा () और भाग () हैं।

दो परिमेय संख्याओं पर संक्रियाएँ

ये कुछ संक्रियाएँ हैं:

दो परिमेय संख्याओं का योग

जब दो परिमेय संख्याओं को जोड़ा जाता है, तो परिणाम एक परिमेय संख्या होती है। उदाहरण के लिए, . को , के रूप में लिखा जा सकता है, जो एक अनुपात या रूप है।

दो परिमेय संख्याओं का घटाव

जब दो परिमेय संख्याओं को घटाया जाता है, तो परिणाम एक परिमेय संख्या होती है। उदाहरण के लिए, जिसे के रूप में लिखा जा सकता है।

दो परिमेय संख्याओं का गुणन

जब दो परिमेय संख्याओं को गुणा किया जाता है, तो परिणाम एक परिमेय संख्या होती है। उदाहरण के लिए, को से गुणा करने पर प्राप्त होता है, जिसे के रूप में लिखा जा सकता है।

दो परिमेय संख्याओं का विभाजन

जब एक परिमेय संख्या को किसी अन्य परिमेय संख्या से विभाजित किया जाता है, तो परिणाम एक परिमेय संख्या होती है। उदाहरण के लिए, को से गुणा करने पर प्राप्त होता है, जिसे के रूप में लिखा जा सकता है।

दो अपरिमेय संख्याओं पर संक्रियाएँ

दो अपरिमेय संख्याओं का योग

जब दो अपरिमेय संख्याओं को जोड़ा जाता है, तो परिणाम एक अपरिमेय या परिमेय संख्या हो सकती है। उदाहरण के लिए, में जोड़ने पर आता है जो एक परिमेय संख्या हो सकती है। हालाँकि, जब को में जोड़ा जाता है, तो हमें एक गैर-समाप्ति और गैर-आवर्ती दशमलव, एक अपरिमेय संख्या प्राप्त होती है। इसे के रूप में लिखा जाता है.

दो अपरिमेय संख्याओं का घटाव

इसी प्रकार, जब दो अपरिमेय संख्याओं को घटाया जाता है, तो परिणाम एक अपरिमेय या एक परिमेय संख्या हो सकती है। में से घटाने पर उत्तर आता है। जब में से घटाया जाता है तो उत्तर आता है।

दो अपरिमेय संख्याओं का गुणन

दो अपरिमेय संख्याओं का गुणनफल एक अपरिमेय संख्या या एक परिमेय संख्या हो सकती है। उदाहरण के लिए, जब को से गुणा किया जाता है, तो हमें मिलता है जो एक परिमेय संख्या है। हालाँकि, जब को से गुणा किया जाता है, तो हमें मिलता है जो एक अपरिमेय संख्या है।

दो अपरिमेय संख्याओं का विभाजन

गुणन के समान, जब एक अपरिमेय संख्या को दूसरी से विभाजित किया जाता है तो परिणाम के रूप में हम या तो एक अपरिमेय संख्या या एक परिमेय संख्या प्राप्त कर सकते हैं। उदाहरण के लिए, जब को से विभाजित किया जाता है, तो हमें प्राप्त होता है जो एक परिमेय संख्या है। लेकिन जब को से विभाजित किया जाता है, तो हमें प्राप्त होता है, जो एक अपरिमेय संख्या है।

परिमेय और अपरिमेय संख्या पर संक्रियाएँ

परिमेय और अपरिमेय संख्या का योग

एक परिमेय और एक अपरिमेय संख्या का योग सदैव अपरिमेय होता है। उदाहरण के लिए, जब को में जोड़ा जाता है तो हमें मिलता है जो एक परिमेय संख्या है।

परिमेय और अपरिमेय संख्या का घटाव

परिमेय और अपरिमेय संख्या के बीच का अंतर सदैव अपरिमेय होता है। उदाहरण के लिए, जब हम में से घटाते हैं, तो हमें मिलता है, जो अपरिमेय है।

परिमेय और अपरिमेय संख्या का गुणन

परिमेय और अपरिमेय संख्या का गुणनफल परिमेय या अपरिमेय हो सकता है। उदाहरण के लिए, जब को से गुणा किया जाता है, तो हमें मिलता है जो एक अपरिमेय संख्या है, लेकिन जब को से गुणा किया जाता है, तो हमें या मिलता है, जो एक परिमेय संख्या है।

परिमेय और अपरिमेय संख्या का विभाजन

जब किसी परिमेय संख्या को अपरिमेय संख्या से भाग दिया जाता है या इसके विपरीत, तो भागफल हमेशा एक अपरिमेय संख्या होती है। उदाहरण के लिए, जब को से विभाजित किया जाता है, तो हमें प्राप्त होता है , जो एक अपरिमेय संख्या है. उत्तर को और सरल करके किया जा सकता है जो भी एक अपरिमेय संख्या है।

उदाहरण

1.


2.


3.


4.