व्यतिकरण

From Vidyalayawiki

Listen

Interference

भौतिकी में, व्यतिकरण का तात्पर्य दो या दो से अधिक तरंगों की परस्पर क्रिया से है जो अंतरिक्ष के एक ही क्षेत्र में एक साथ आती हैं। जब तरंगें ओवरलैप होती हैं, तो उनके आयाम (ऊंचाई) एक साथ जुड़ जाते हैं, जिसके परिणामस्वरूप सम्पोषि या विनाशी व्यतिकरण का एक नया विन्यास बनता है।

समझने के लिए

जल तरंगों का उपयोग करते हुए एक उदाहरण पर विचार कर कल्पना करें कि दो कंकड़ एक तालाब में गिराए जाते हैं, जिससे दो लहरें बनती हैं, जो फैलती हैं और अंततः मिलती हैं। जब तरंगों के शिखर, एक-दूसरे के साथ मेल खाते हैं, तो वे एक मजबूत तरंग बनाते हैं, जिसे सम्पोषि व्यतिकरण के रूप में जाना जाता है। हालाँकि, जब एक लहर का शिखर दूसरी लहर के गर्त (निम्नतम बिंदु) के साथ संरेखित होता है, तो वे एक-दूसरे को रद्द कर देते हैं, जिसके परिणामस्वरूप एक कमजोर लहर उत्पन्न होती है जिसे विनाशी व्यतिकरण के रूप में जाना जाता है।

व्यतिकरण विभिन्न प्रकार की तरंगों के साथ हो सकता है, जैसे जल तरंगें, ध्वनि तरंगें, या प्रकाश तरंगें। मुख्य अवधारणा यह है कि जब तरंगें मिलती हैं, तो उनके आयाम अंतरिक्ष में प्रत्येक बिंदु पर संयोजित होते हैं।

गणितीय प्रतिनिधित्व

हस्तक्षेप के गणितीय प्रतिनिधित्व में सुपरपोजिशन सिद्धांत शामिल है, जो बताता है कि एक बिंदु पर कुल विस्थापन प्रत्येक व्यक्तिगत तरंग के कारण होने वाले विस्थापन का योग है। आइए दो तरंगों पर विचार करें, A1sin⁡(kx−ωt ϕ1)और A2sin⁡(kx−ωt ϕ2),

जहां:

  •    A1​ और A2​ तरंगों के आयाम हैं।
  •    k तरंग संख्या है (2π/λ के बराबर, जहां λ तरंग दैर्ध्य है)।
  •    x स्थिति है।
  •    ω कोणीय आवृत्ति है।
  •    t समय है ।
  • ϕ1​ और ϕ2​ तरंगों के प्रारंभिक चरण हैं।

इन दो तरंगों के कारण किसी भी बिंदु (x,t) पर कुल विस्थापन इस प्रकार दिया गया है:

A_total sin(kx−ωt ϕ_total)

जहाँ:

   A_totalपरिणामी आयाम है, जो हस्तक्षेप द्वारा निर्धारित होता है।

   ϕ_total चरण है, जो हस्तक्षेप द्वारा भी निर्धारित होता है।


इस संयोजन के परिणामस्वरूप तरंगों का सुदृढीकरण ( सम्पोषि व्यतिकरण ) या रद्दीकरण (विनाशी व्यतिकरण ) हो सकता है, जो उनके बीच चरण संबंध पर निर्भर करता है।

सम्पोषि व्यतिकरण

सम्पोषि व्यतिकरण तब होता है जब दो या दो से अधिक तरंगों की चोटियाँ एक दूसरे के साथ संरेखित होती हैं, जिसके परिणामस्वरूप आयाम में वृद्धि होती है। तरंगें एक-दूसरे को सुदृढ़ करती हैं, जिससे ओवरलैप के बिंदुओं पर एक बड़ा आयाम बनता है। यह प्रकाश तरंगों के मामले में बढ़ी हुई तीव्रता या चमक, ध्वनि तरंगों के मामले में तेज़ ध्वनि, या पानी की लहरों के मामले में उच्च तरंग ऊंचाई के क्षेत्र बना सकता है।

विनाशी व्यतिकरण

विनाशी व्यतिकरण तब होता है जब एक लहर का शिखर दूसरी लहर के गर्त के साथ संरेखित होता है, जिससे रद्दीकरण और आयाम में कमी आती है। तरंगें इस तरह से व्यतिकरण करती हैं कि उनके आयाम एक-दूसरे से घट जाते हैं, जिसके परिणामस्वरूप आयाम कम हो जाता है या कुछ बिंदुओं पर पूर्ण रद्दीकरण भी हो जाता है।यह प्रकाश तरंगों के मामले में कम तीव्रता या अंधेरे, ध्वनि तरंगों के मामले में शांत ध्वनि, या पानी की लहरों के मामले में कम तरंग ऊंचाई वाले क्षेत्र बना सकता है।

जो व्यतिकरण पैटर्न (विन्यास ) बनता है वह कई कारकों पर निर्भर करता है, जिसमें सापेक्ष आयाम, तरंग दैर्ध्य और तरंगों के बीच चरण अंतर शामिल हैं। चरण अंतर इस बात का माप है कि एक तरंग दूसरी तरंग के संबंध में कितनी दूर तक स्थानांतरित होती है। जब चरण अंतर तरंग दैर्ध्य (0, 1λ, 2λ, आदि) का एक पूर्णांक गुणक होता है, तो सम्पोषि व्यतिकरण होता है, जबकि जब यह तरंग दैर्ध्य (0.5λ, 1.5λ, 2.5λ, आदि) का आधा-पूर्णांक गुणज होता है। ), विनाशी व्यतिकरण होता है।

विभिन्न अनुप्रयोग

व्यतिकरण घटनाएँ व्यापक रूप से देखी जाती हैं। उदाहरण के लिए, साबुन के बुलबुले, तेल फिल्म और पतली-फिल्म कोटिंग्स में दिखाई देने वाले रंगीन विन्यास के निर्माण में व्यतिकरण महत्वपूर्ण भूमिका निभाता है। यह रेडियो एंटेना, ऑप्टिकल डिवाइस और संगीत वाद्ययंत्र जैसी प्रौद्योगिकियों में भी मौलिक है।

संक्षेप में

व्यतिकरण दो या दो से अधिक तरंगों की परस्पर क्रिया है,जो अंतरिक्ष के एक ही क्षेत्र में एक साथ आती हैं। जब तरंगें ओवरलैप होती हैं, तो उनके आयाम एक साथ जुड़ जाते हैं, जिसके परिणामस्वरूप बढ़े हुए आयाम के साथ सम्पोषि व्यतिकरण या घटे हुए आयाम के साथ विनाशी व्यतिकरण होता है। व्यतिकरण विन्यास सापेक्ष आयाम, तरंग दैर्ध्य और तरंगों के बीच चरण अंतर जैसे कारकों पर निर्भर करता है। जल तरंगों, ध्वनि तरंगों और प्रकाश तरंगों में व्यतिकरण देखा जाता है और यह विभिन्न व्यावहारिक अनुप्रयोगों में महत्वपूर्ण भूमिका निभाता है।