इस अनुभाग में, हम सम्मिश्र संख्याओं का बीजगणित वर्णन करेंगे।
दो सम्मिश्र संख्याओं का योग
मान लीजिए कि और कोई दो सम्मिश्र संख्याएँ हैं। फिर योग को इस प्रकार परिभाषित किया गया है:
जो कि एक सम्मिश्र संख्या भी है।
उदाहरण: मान लीजिए और । अत:
सम्मिश्र संख्याओं का योग निम्नलिखित गुणों को संतुष्ट करता है:
संवरक नियम
दो सम्मिश्र संख्याओं का योग एक सम्मिश्र संख्या होती है। सभी सम्मिश्र संख्याओं और के लिए एक सम्मिश्र संख्या है।
क्रम विनिमय नियम
किन्हीं दो सम्मिश्र संख्याओं और के लिए,
साहचर्य नियम
किन्हीं तीन सम्मिश्र संख्याओं ,
योगात्मक तत्समक का अस्तित्व
सम्मिश्र संख्या ( के रूप में चिह्नित) मौजूद है, जिसे योगात्मक तत्समक या शून्य सम्मिश्र संख्या कहा जाता है, जैसे कि प्रत्येक सम्मिश्र संख्या के लिए
योगात्मक प्रतिलोम का अस्तित्व
प्रत्येक सम्मिश्र संख्या के लिए, हमारे पास सम्मिश्र संख्या होती है जिसे का योगात्मक प्रतिलोम या ऋणात्मक कहा जाता है। हम देखते हैं कि (योगात्मक तत्समक)।
दो सम्मिश्र संख्याओं का अंतर
किन्हीं दो सम्मिश्र संख्याओं को देखते हुए अंतर को इस प्रकार परिभाषित किया गया है
उदाहरण:
दो सम्मिश्र संख्याओं का गुणन
मान लीजिए कि और कोई दो सम्मिश्र संख्याएँ हैं। तब गुणनफल को इस प्रकार परिभाषित किया गया है:
सम्मिश्र संख्याओं का गुणन निम्नलिखित गुणों को संतुष्ट करता है:
संवरक नियम
दो सम्मिश्र संख्याओं का गुणनफल एक सम्मिश्र संख्या होती है। सभी सम्मिश्र संख्याओं और के लिए एक सम्मिश्र संख्या है।
क्रम विनिमय नियम
किन्हीं दो सम्मिश्र संख्याओं के लिए और
साहचर्य नियम
किन्हीं तीन सम्मिश्र संख्याओं के लिए ,
गुणात्मक तत्समक का अस्तित्व
वहाँ सम्मिश्र संख्या ( के रूप में चिह्नित) मौजूद है जिसे गुणात्मक तत्समक कहा जाता है, जैसे कि प्रत्येक सम्मिश्र संख्या के लिए,
गुणात्मक प्रतिलोम का अस्तित्व
प्रत्येक गैर-शून्य सम्मिश्र संख्या , के लिए हमारे पास सम्मिश्र संख्या ( या के रूप में चिह्नित) का गुणनात्मक प्रतिलोम इस प्रकार कहा जाता है कि (गुणात्मक तत्समक)।
वितरण नियम
किन्हीं तीन सम्मिश्र संख्याओं के लिए
दो सम्मिश्र संख्याओं का विभाजन
किन्हीं दो सम्मिश्र संख्याओं को देखते हुए, जहां , भागफल को परिभाषित किया गया है।
उदाहरण: मान लीजिए और
हम जानते हैं
के लिए
अतः के लिए ,
i के घात
हम जानते हैं