Squares of four digit numbers using Duplex by Bhārati Kṛṣṇa Tīrtha
To find the square of any number we use the " Dwandwa yoga " with " Ūrdhvatiryagbhyām "
द्वन्द्व योग
" Dwandwa yoga " " Duplex combination process " |
+ | ऊर्ध्वतिर्यग्भ्याम्
" Ūrdhvatiryagbhyām " " Vertical and crosswise " |
Here we will be learning the Squares of Four digit Numbers[1]. The detailed steps will be explained through the below examples.
Squares of Four digit Numbers
Example : 23142
Fourth Column | Third Column | Second Column | First Column |
---|---|---|---|
2 | 3 | 1 | 4 |
Step 1: 2 3 1 4 Starting from right take the duplex of the first column digit .D(4) = 42 = 16
Step 2 : 2 3 1 4 Take the duplex of the second column and first column digit D(14) = 2(1 X 4) = 8
Step 3 : 2 3 1 4 Take the duplex of the third column , second column and first column digits D(314) = 2(3 X 4) + 12 = 24 + 1 = 25
Step 4 : 2 3 1 4 Take the duplex of the fourth column, third column , second column and first column D(2314) = 2(2 X 4) + 2(3 X 1) = 16 + 6 = 22
Step 5 : 2 3 1 4 Take the duplex of the fourth column, third column , second column D(231) = 2(2 X 1) + 32 = 4 + 9 = 13
Step 6 : 2 3 1 4 Take the duplex of the fourth column, third column D(23) = 2(2 X 3) = 12
Step 7 : 2 3 1 4 Take the duplex of the fourth column D(2) = 22 = 4
Step 8 : Put the above values got from each step in the below table.
Step 7 | Step 6 | Step 5 | Step 4 | Step 3 | Step 2 | Step 1 |
---|---|---|---|---|---|---|
4 | 12 | 13 | 22 | 25 | 8 | 16 |
4 | 12 | 13 | 22 | 25 | 8 | Put 6 and carry over 1 |
4 | 12 | 13 | 22 | 25 | 8 + Carry over (1) | 6 |
4 | 12 | 13 | 22 | 25 | 9 | 6 |
4 | 12 | 13 | 22 | Put 5 and carry over 2 | 9 | 6 |
4 | 12 | 13 | 22 + Carry over (2) | 5 | 9 | 6 |
4 | 12 | 13 | 24 | 5 | 9 | 6 |
4 | 12 | 13 | Put 4 and carry over 2 | 5 | 9 | 6 |
4 | 12 | 13 + Carry over (2) | 4 | 5 | 9 | 6 |
4 | 12 | 15 | 4 | 5 | 9 | 6 |
4 | 12 | Put 5 and carry over 1 | 4 | 5 | 9 | 6 |
4 | 12 + Carry over (1) | 5 | 4 | 5 | 9 | 6 |
4 | 13 | 5 | 4 | 5 | 9 | 6 |
4 | Put 3 and carry over 1 | 5 | 4 | 5 | 9 | 6 |
4 + Carry over (1) | 3 | 5 | 4 | 5 | 9 | 6 |
5 | 3 | 5 | 4 | 5 | 9 | 6 |
Answer : 23142 = 5354596
Example : 27362
Fourth Column | Third Column | Second Column | First Column |
---|---|---|---|
2 | 7 | 3 | 6 |
Step 1: 2 7 3 6 Starting from right take the duplex of the first column digit .D(6) = 62 = 36
Step 2 : 2 7 3 6 Take the duplex of the second column and first column digit D(36) = 2(3 X 6) = 36
Step 3 : 2 7 3 6 Take the duplex of the third column , second column and first column digits D(736) = 2(7 X 6) + 32 = 84 + 9 = 93
Step 4 : 2 7 3 6 Take the duplex of the fourth column, third column , second column and first column D(2736) = 2(2 X 6) + 2(7 X 3) = 24 + 42 = 66
Step 5 : 2 7 3 6Take the duplex of the fourth column, third column , second column D(273) = 2(2 X 3) + 72 = 12 + 49 = 61
Step 6 : 2 7 3 6 Take the duplex of the fourth column, third column D(27) = 2(2 X 7) = 28
Step 7 : 2 7 3 6Take the duplex of the fourth column D(2) = 22 = 4
Step 8 : Put the above values got from each step in the below table.
Step 7 | Step 6 | Step 5 | Step 4 | Step 3 | Step 2 | Step 1 |
---|---|---|---|---|---|---|
4 | 28 | 61 | 66 | 93 | 36 | 36 |
4 | 28 | 61 | 66 | 93 | 36 | Put 6 and carry over 3 |
4 | 28 | 61 | 66 | 93 | 36 + Carry over (3) | 6 |
4 | 28 | 61 | 66 | 93 | 39 | 6 |
4 | 28 | 61 | 66 | 93 | Put 9 and carry over 3 | 6 |
4 | 28 | 61 | 66 | 93 + Carry over (3) | 9 | 6 |
4 | 28 | 61 | 66 | 96 | 9 | 6 |
4 | 28 | 61 | 66 | Put 6 and carry over 9 | 9 | 6 |
4 | 28 | 61 | 66 + Carry over (9) | 6 | 9 | 6 |
4 | 28 | 61 | 75 | 6 | 9 | 6 |
4 | 28 | 61 + Carry over (7) | Put 5 and carry over 7 | 6 | 9 | 6 |
4 | 28 | 68 | 5 | 6 | 9 | 6 |
4 | 28 | Put 8 and carry over 6 | 5 | 6 | 9 | 6 |
4 | 28 + Carry over (6) | 8 | 5 | 6 | 9 | 6 |
4 | 34 | 8 | 5 | 6 | 9 | 6 |
4 | Put 4 and carry over 3 | 8 | 5 | 6 | 9 | 6 |
4 + Carry over (3) | 4 | 8 | 5 | 6 | 9 | 6 |
7 | 4 | 8 | 5 | 6 | 9 | 6 |
Answer : 27362 = 7485696
See Also
द्वैध उपयोग से चार अंकों की संख्याओं का वर्ग - भारती कृष्ण तीर्थ
References
- ↑ Singhal, Vandana (2007). Vedic Mathematics For All Ages - A Beginners' Guide. Delhi: Motilal Banarsidass. p. 232. ISBN 978-81-208-3230-5.